Sains Malaysiana 54(4)(2025): 1167-1175

http://doi.org/10.17576/jsm-2025-5404-16

 

Peningkatan Isyarat SERS Berdasarkan Pemerangkapan Foton oleh Nanorod ZnO Vertikal Terbantu Suhu untuk aplikasi CKD

(SERS Signal Enhancement Based on Photon Trapping by Thermally Assisted Vertical ZnO Nanorod for CKD Applications)

 

NUR ADLIHA ABDULLAH, MOHD ZULHAKIMI AB. RAZAK, TENGKU HASNAN TENGKU ABDUL AZIZ* & MUHAMAD MAT SALLEH

 

Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 19 August 2024/Accepted: 22 December 2024

 

Abstract

Developing a sensitive and selective Surface-Enhanced Raman Spectroscopy (SERS) substrate plays a crucial role in biomedical applications. In this study, the semiconductor material, ZnO is used as a SERS substrate to detect creatinine in determining an individual’s kidney health status. ZnO as a SERS substrate was synthesized with temperature variations at 50 °C, 80 °C, 110 °C, and 140 °C to produce vertically aligned ZnO nanorod, optimizing photon trapping and subsequently enhancing the SERS signal. The effect of temperature on ZnO growth was systematically studied using FESEM, UV-Vis spectroscopy, and XRD analysis. The optimum growth temperature at 80 °C produced uniform vertically aligned ZnO nanorods with an average crystallite size of 29.48 nm. These vertical ZnO structures possess a large active surface area, enabling optimal photon trapping. The structure demonstrated a 29% enhancement in the SERS signal when tested for creatinine detection, with an enhancement factor (EF) of 3.09×10¹. This study proves the performance of vertically aligned ZnO nanorods in photon trapping to enhance SERS signals for biomedical applications.

Keywords: Creatinine; growth temperature; photon trapping; SERS mechanism; vertical ZnO nanorods


 

Abstrak

Pembangunan substrat Spektroskopi Serakan Raman Permukaan Diperkuat (SERS) yang sensitif dan bersifat selektif dapat memainkan peranan penting dalam aplikasi bidang bioperubatan. Dalam kajian ini, bahan semikonduktor ZnO digunakan sebagai substrat SERS untuk mengesan kepekatan kreatinin bagi menentukan tahap kesihatan ginjal individu. Bahan semikonduktor ZnO sebagai substrat SERS disintesis dengan variasi suhu pada 50 °C, 80 °C, 110 °C dan 140 °C bagi menghasilkan ZnO berstruktur nanorod vertikal untuk mengoptimumkan pemerangkapan foton dan seterusnya meningkatkan isyarat SERS. Kesan suhu terhadap pertumbuhan ZnO telah dikaji dengan terperinci menggunakan alatan FESEM, spektroskopi UV-Vis dan XRD. Suhu pertumbuhan optimum pada 80 °C berjaya menghasilkan nanorod ZnO vertikal yang sekata dengan purata saiz hablurnya adalah 29.48 nm. Struktur ZnO vertikal ini mempunyai luas permukaan aktif yang besar, membolehkan pemerangkapan foton secara optimum berlaku. Struktur ini telah menunjukkan peningkatan isyarat SERS sebanyak 29% setelah diuji dalam pengesanan kreatinin dengan EF 3.09×101. Kajian ini membuktikan prestasi penggunaan nanorod ZnO vertikal dalam pemerangkapan foton bagi meningkatkan isyarat SERS untuk bidang bioperubatan.

Kata kunci: Kreatinin; mekanisme SERS; nanorod ZnO vertikal; pemerangkapan foton; suhu pertumbuhan


 

REFERENCES

Abdullah, N.A., Abu Bakar, N., Joseph, G.S., Salleh, M.M. & Umar, A.A. 2017. Synthesis of silver-platinum nanoferns substrates used in surfacee Raman spectroscopy Sensors to detect creatinine. Advances in Natural Sciences: Nanoscience and Nanotechnology 8(2): 025015.

Abdullah, N.A., Abu Bakar, N., Salleh, M.M. & Umar, A.A. 2016. Application of gold nanoseeds in surface- enhanced Raman spectroscopy for detection of urea. KnE Engineering 1(1). https://doi.org/10.18502/keg.v1i1.484

Abdulrahman, A.F., Sabah, M.A., Samir, M.H. & Azeez, A.B. 2021. Effect of growth temperature on morphological, structural, and optical of ZnO nanorods using modified chemical bath deposition method. Journal of Electronic Materials 50(3): 1482-1495.

Abu Bakar, N. & Joseph, G.S. 2023. Silver nanostar films for surface-enhanced Raman spectroscopy (SERS) of the pesticide imidacloprid. Heliyon 9(3): e14686.

Bidier, S.A., Hashim, M.R. & Ahmad, M.A. 2017. Effect of postannealing treatment on structural and optical properties of ZnO nanorods prepared using chemical bath deposition. Journal of Electronic Materials 46(7): 4455-4462.

Boukhoubza, I., Khenfouch, M., Achehboune, M., Mothudi, B.M., Zorkani, I. & Jorio, A. 2019. Morphological and structural properties of ZnO nanorods coated with graphene derivative fabricated by hydrothermal method. Journal of Physics: Conference Series 1292: 012012.

Burton, C., Honglan, S. & Yinfa, M. 2013. Simultaneous detection of six urinary pteridines and creatinine by high-performance liquid chromatography-tandem mass spectrometry for clinical breast cancer detection. Analytical Chemistry 85(22): 11137-11145.

Chang, Y.C. 2016. Low temperature and large-scale growth of ZnO nanoneedles with enhanced optical and surface-enhanced Raman scattering properties. Sensors and Actuators, B: Chemical 225(3): 498-503.

Faisal, A.D., Raid, A.I., Wafaa, K.K. & Evan, T.S. 2020. Synthesis of ZnO nanorods on a silicon substrate via hydrothermal route for optoelectronic applications. Optical and Quantum Electronics 52: 212.

Fudzi, L.M., Zulkarnain, Z, Hong, N.L., Sook, K.C., Araa, M.H. & Mahanim, S.M.A. 2018. Effect of temperature and growth time on vertically aligned ZnO nanorods by simplified hydrothermal technique for photoelectrochemical cells. Materials 11(5): 704.

Gangopadhyay, D., Poornima, S., Rajib, N., Moumita, D., Surajit, G. & Ranjan, K.S. 2016. In vitro concentration dependent detection of creatinine: A surface enhanced Raman scattering and fluorescence study. RSC Advances 113(6): 112562-112567.

Giorgis, F., Descrovi, E., Chiodoni, A., Froner, E., Scarpa, M., Venturello, A. & Geobaldo, F. 2008. Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate. Applied Surface Science 254(22): 7494-7497.

Gonzalez-Valls, I., Yu, Y., Ballesteros, B., Oro, J. & Lira-Cantu, M. 2011. Synthesis conditions, light intensity and temperature effect on the performance of ZnO nanorods-based dye-sensitized solar cells. Journal of Power Sources 196(15): 6609-6621.

Ji, W., Zhao, B. & Ozaki, Y. 2016. Semiconductor materials in analytical applications of surface-enhanced Raman scattering. Journal of Raman Spectroscopy 47: 51-58.

Kareem, M.M., Khodair, Z.T. & Mohammed, F.Y. 2020. Effect of annealing temperature on structural, morphological, and optical properties of ZnO nanorod thin films prepared by hydrothermal method. Journal of Ovonic Research 16(1): 53-61.

Kullavadee, K-O. & Ngamaroonchote, A. 2021. Role of polyelectrolyte multilayers over gold film for selective creatinine detection using Raman spectroscopy. Applied Surface Science 546(4): 149092.

Kumar, E.A., Barveen, N.R., Wang, T.J., Kokulnathan, T. & Chang, Y.H. 2021. Development of SERS platform based on ZnO multipods decorated with Ag nanospheres for detection of 4-nitrophenol and rhodamine 6G in real samples. Microchemical Journal 170: 106660.

Li, M., Du, Y., Zhao, F., Zeng, J., Mohan, C. & Shih, W.C. 2015. Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomedical Optics Express 6(3): 849.

Liu, C., Xu, X., Wang, C., Qiu, G., Ye, W., Li, Y. & Wang, D. 2020. ZnO/Ag nanorods as a prominent SERS substrate contributed by synergistic transfer effect for simultaneous detection of oral antidiabetic drugs pioglitazone and phenformin. Sensors and Actuators, B: Chemical 307: 127634.

Liu, Y., Kim, M., Cho, S.H. & Jung, Y.S. 2021. Vertically aligned nanostructures for a reliable and ultrasensitive SERS-active platform: Fabrication and engineering strategies. Nano Today 37: 1010-1063.

Meng, Y., Yu, L. & Yang, J. 2013. Synthesis of rod-cluster ZnO nanostructures and their application to dye-sensitized solar cells. Applied Surface Science 268: 561-565.

Mufti, N., Laila, I.K.R., Idiawati, R., Fuad, A., Hidayat, A., Taufiq, A. & Sunaryono. 2018. The effect of growth temperature on the characteristics of ZnO nanorods and its optical properties. Journal of Physics: Conference Series 1057: 012005.

Randviir, E.P., Kampouris, D.K. & Banks, C.E. 2013. An improved electrochemical creatinine detection method via a Jaffe-based procedure. Analyst 138(21): 6565-6572.

Shaziman, S., Ismail, A.S., Mamat, M.H. & Zoolfakar, A.S. 2015. Influence of growth time and temperature on the morphology of ZnO nanorods via hydrothermal. IOP Conference Series: Materials Science and Engineering 99: 012-016.

Tang, H., Meng, G., Qing, H., Zhang, Z., Huang, Z. & Zhu, C. 2012. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Advanced Functional Materials 22(1): 218-224.

Wahid, K.A., Irfan, A.R., Safri, S.N.A. & Ariffin, A.H. 2023. Synthesis of ZnO nanorods at very low temperatures using ultrasonically pre-treated growth solution. Processes 11(3): 708.

Yang, L., Yang, Y., Ma, Y., Li, S., Wei, Y., Huang, Z. & Nguyen, V.L. 2017. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials 7(11): 398.

Zhu, W., Wen, B.Y., Jie, L.J., Tian, X.D., Yang, Z.L., Radjenovic, P.M., Luo, S.Y., Tian, Z.Q. & Li, J.F. 2020. Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer. Biosensors and Bioelectronics 154: 112067.

 

*Corresponding author; email: hasnanaziz@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next